17 research outputs found

    Operational advantages provided by nonclassical teleportation

    Get PDF
    The standard benchmark for teleportation is the average fidelity of teleportation and according to this benchmark not all states are useful for teleportation. It was recently shown however that all entangled states lead to non-classical teleportation, with there being no classical scheme able to reproduce the states teleported to Bob. Here we study the operational significance of this result. On the one hand we demonstrate that every entangled state is useful for teleportation if a generalization of the average fidelity of teleportation is considered which concerns teleporting quantum correlations. On the other hand, we show the strength of a particular entangled state and entangled measurement for teleportation -- as quantified by the robustness of teleportation -- precisely characterizes their ability to offer an advantage in the task of subchannel discrimination with side information. This connection allows us to prove that every entangled state outperforms all separable states when acting as a quantum memory in this discrimination task. Finally, within the context of a resource theory of teleportation, we show that the two operational tasks considered provide complete sets of monotones for two partial orders based upon the notion of teleportation simulation, one classical, and one quantum.Comment: 5+12 pages, 1 figur

    All states are universal catalysts in quantum thermodynamics

    Get PDF
    Quantum catalysis is a fascinating concept which demonstrates that certain transformations can only become possible when given access to a specific resource that has to be returned unaffected. It was first discovered in the context of entanglement theory and since then applied in a number of resource-theoretic frameworks, including quantum thermodynamics. Although in that case the necessary (and sometimes also sufficient) conditions on the existence of a catalyst are known, almost nothing is known about the precise form of the catalyst state required by the transformation. In particular, it is not clear whether it has to have some special properties or be finely tuned to the desired transformation. In this work we describe a surprising property of multi-copy states: we show that in resource theories governed by majorization all resourceful states are catalysts for all allowed transformations. In quantum thermodynamics this means that the so-called "second laws of thermodynamics" do not require a fine-tuned catalyst but rather any state, given sufficiently many copies, can serve as a useful catalyst. These analytic results are accompanied by several numerical investigations that indicate that neither a multi-copy form nor a very large dimension catalyst are required to activate most allowed transformations catalytically.Comment: 17 + 11 pages, 7 figures. Numerical results significantly extended. Comments welcome

    Catalytic quantum teleportation

    Get PDF
    Quantum catalysis is an intricate feature of quantum entanglement. It demonstrates that in certain situations the very presence of entanglement can improve one's abilities of manipulating other entangled states. At the same time, however, it is not clear if using entanglement catalytically can provide additional power for any of the existing quantum protocols. Here we show, for the first time, that catalysis of entanglement can provide a genuine advantage in the task of quantum teleportation. More specifically, we show that extending the standard teleportation protocol by giving Alice and Bob the ability to use entanglement catalytically, allows them to achieve fidelity of teleportation at least as large as the regularisation of the standard teleportation quantifier, the so-called average fidelity of teleportation. Consequently, we show that this regularised quantifier surpasses the standard benchmark for a variety of quantum states, therefore demonstrating that there are quantum states whose ability to teleport can be further improved when assisted with entanglement in a catalytic way. This hints that entanglement catalysis can be a promising new avenue for exploring novel advantages in the quantum domain.Comment: 6 + 2 pages, 2 figures. Comments welcome

    Fundamental limits on anomalous energy flows in correlated quantum systems

    Full text link
    In classical thermodynamics energy always flows from the hotter system to the colder one. However, if these systems are initially correlated, the energy flow can reverse, making the cold system colder and the hot system hotter. This intriguing phenomenon is called ``anomalous energy flow'' and shows the importance of initial correlations in determining physical properties of thermodynamic systems. Here we investigate the fundamental limits of this effect. Specifically, we find the optimal amount of energy that can be transferred between quantum systems under closed and reversible dynamics, which then allows us to characterize the anomalous energy flow. We then explore a more general scenario where the energy flow is mediated by an ancillary quantum system that acts as a catalyst. We show that this approach allows for exploiting previously inaccessible types of correlations, ultimately resulting in an energy transfer that surpasses our fundamental bound. To demonstrate these findings, we use a well-studied quantum optics setup involving two atoms coupled to an optical cavity.Comment: 5+3 pages. Comments welcome

    Catalysis in Quantum Information Theory

    Full text link
    Catalysts open up new reaction pathways which can speed up chemical reactions while not consuming the catalyst. A similar phenomenon has been discovered in quantum information science, where physical transformations become possible by utilizing a (quantum) degree of freedom that remains unchanged throughout the process. In this review, we present a comprehensive overview of the concept of catalysis in quantum information science and discuss its applications in various physical contexts.Comment: Review paper; Comments and suggestions welcome

    Multiobject operational tasks for convex quantum resource theories of state-measurement pairs

    Get PDF
    The prevalent modus operandi within the framework of quantum resource theories has been to characterise and harness the resources within single objects, in what we can call \emph{single-object} quantum resource theories. One can wonder however, whether the resources contained within multiple different types of objects, now in a \emph{multi-object} quantum resource theory, can simultaneously be exploited for the benefit of an operational task. In this work, we introduce examples of such multi-object operational tasks in the form of subchannel discrimination and subchannel exclusion games, in which the player harnesses the resources contained within a state-measurement pair. We prove that for any state-measurement pair in which either of them is resourceful, there exist discrimination and exclusion games for which such a pair outperforms any possible free state-measurement pair. These results hold for arbitrary convex resources of states, and arbitrary convex resources of measurements for which classical post-processing is a free operation. Furthermore, we prove that the advantage in these multi-object operational tasks is determined, in a multiplicative manner, by the resource quantifiers of: \emph{generalised robustness of resource} of both state and measurement for discrimination games and \emph{weight of resource} of both state and measurement for exclusion games.Comment: 5+8 page
    corecore